
1

Chapter 1

Disk Storage, Basic File Structures,

and Hashing.

Adapted from the slides of “Fundamentals of Database Systems”

(Elmasri et al., 2006)

2

Chapter Outline

 Disk Storage Devices

 Files of Records

 Operations on Files

 Unordered Files

 Ordered Files

 Hashed Files

 Dynamic and Extendible Hashing Techniques

 RAID Technology

3

Disk Storage Devices

 Preferred secondary storage device for high

storage capacity and low cost.

 Data stored as magnetized areas on

magnetic disk surfaces.

 A disk pack contains several magnetic disks

connected to a rotating spindle.

 Disks are divided into concentric circular

tracks on each disk surface .

 Track capacities vary typically from 10 to 150

Kbytes.

Disk Storage Devices (cont.)

4

Disk Storage Devices (cont.)

5

Sector

Track

Spindle

6

Disk Storage Devices (cont.)

 A track is divided into smaller blocks or

sectors.

 because a track usually contains a large amount

of information .

 A track is divided into blocks.

 The block size B is fixed for each system.

 Typical block sizes range from B=512 bytes to

B=8192 bytes.

 Whole blocks are transferred between disk and

main memory for processing.

7

Disk Storage Devices (cont.)
 A read-write head moves to the track that contains the

block to be transferred.
 Disk rotation moves the block under the read-write head for

reading or writing.

 A physical disk block (hardware) address consists of:
 a cylinder number (imaginary collection of tracks of same

radius from all recorded surfaces)

 the track number or surface number (within the cylinder)

 and block number (within track).

 Reading or writing a disk block is time consuming
because of the seek time s and rotational delay (latency)
rd.

 Double buffering can be used to speed up the transfer of
contiguous disk blocks.

8

Double Buffering

9

10

Records

 Fixed and variable length records.

 Records contain fields which have values of a

particular type.

 E.g., amount, date, time, age.

 Fields themselves may be fixed length or

variable length.

 Variable length fields can be mixed into one

record:

 Separator characters or length fields are needed

so that the record can be “parsed”.

Records (cont.)

11

12

Blocking

 Blocking: refers to storing a number of
records in one block on the disk.

 Blocking factor (bfr): refers to the number
of records per block.

 There may be empty space in a block if an
integral number of records do not fit in one
block.

 Spanned Records: refer to records that
exceed the size of one or more blocks and
hence span a number of blocks.

Blocking (cont.)

13

14

Files of Records

 A file is a sequence of records, where each record is

a collection of data values (or data items).

 A file descriptor (or file header) includes information

that describes the file, such as the field names and

their data types, and the addresses of the file blocks

on disk.

 Records are stored on disk blocks.

 The blocking factor bfr for a file is the (average)

number of file records stored in a disk block.

 A file can have fixed-length records or variable-

length records.

15

Files of Records (cont.)

 File records can be unspanned or spanned:

 Unspanned: no record can span two blocks

 Spanned: a record can be stored in more than one block

 The physical disk blocks that are allocated to hold the
records of a file can be contiguous, linked, or indexed.

 In a file of fixed-length records, all records have the
same format. Usually, unspanned blocking is used with
such files.

 Files of variable-length records require additional
information to be stored in each record, such as
separator characters and field types.

 Usually spanned blocking is used with such files.

16

Operation on Files

Typical file operations include:

 OPEN: Reads the file for access, and associates a
pointer that will refer to a current file record at each point
in time.

 FIND: Searches for the first file record that satisfies
a certain condition, and makes it the current file record.

 FINDNEXT: Searches for the next file record (from
the current record) that satisfies a certain condition, and
makes it the current file record.

 READ: Reads the current file record into a program
variable.

 INSERT: Inserts a new record into the file, and makes
it the current file record.

17

Operation on Files (cont.)

 DELETE: Removes the current file record from the
file, usually by marking the record to indicate that it
is no longer valid.

 MODIFY: Changes the values of some fields of the
current file record.

 CLOSE: Terminates access to the file.

 REORGANIZE: Reorganizes the file records. For
example, the records marked deleted are physically
removed from the file or a new organization of the
file records is created.

 READ_ORDERED: Read the file blocks in order of
a specific field of the file.

18

Unordered Files

 Also called a heap or a pile file.

 New records are inserted at the end of the file.

 A linear search through the file records is

necessary to search for a record.

 This requires reading and searching half the file

blocks on the average, and is hence quite expensive.

 Record insertion is quite efficient.

 Reading the records in order of a particular field

requires sorting the file records.

19

Ordered Files

 Also called a sequential file.

 File records are kept sorted by the values of an ordering
field.

 Insertion is expensive: records must be inserted in the
correct order.
 It is common to keep a separate unordered overflow (or

transaction) file for new records to improve insertion efficiency;
this is periodically merged with the main ordered file.

 A binary search can be used to search for a record on
its ordering field value.
 This requires reading and searching log2 of the file blocks on the

average, an improvement over linear search.

 Reading the records in order of the ordering field is quite
efficient.

20

Ordered Files

(cont.)

21

Average Access Times

 The following table shows the average access time

to access a specific record for a given type of file:

22

Hashed Files

 Hashing for disk files is called External Hashing.

 The file blocks are divided into M equal-sized buckets,
numbered bucket0, bucket1, ..., bucketM-1.
 Typically, a bucket corresponds to one (or a fixed number of) disk

block.

 One of the file fields is designated to be the hash key of
the file.

 The record with hash key value K is stored in bucket i,
where i=h(K), and h is the hashing function.

 Search is very efficient on the hash key.

 Collisions occur when a new record hashes to a bucket
that is already full.
 An overflow file is kept for storing such records.

 Overflow records that hash to each bucket can be linked together.

Hashed Files (cont.)

23

24

Hashed Files (cont.)

There are numerous methods for collision resolution:

 Open addressing: Proceeding from the occupied position
specified by the hash address, the program checks the
subsequent positions in order until an unused (empty)
position is found.
 h(K) = K mod 7

 Insert 8

 Insert 15

 Insert 13

0 1 2 3 4 5 6

1 3 11 6

1 8 3 11 6

1 8 3 11 15 6

13 1 8 3 11 15 6

25

Hashed Files (cont.)

 There are numerous methods for collision resolution,
including the following:
 Chaining:

 Various overflow locations are kept: extending the array with a
number of overflow positions.

 A pointer field is added to each record location.

 A collision is resolved by placing the new record in an unused
overflow location and setting the pointer of the occupied hash
address location to the address of that overflow location.

 Multiple hashing:

 The program applies a second hash function if the first results in
a collision.

 If another collision results, the program uses open addressing or
applies a third hash function and then uses open addressing if
necessary.

Hashed Files (cont.) - Overflow handling

26

27

Hashed Files (cont.)

 To reduce overflow records, a hash file is typically

kept 70-80% full.

 The hash function h should distribute the records

uniformly among the buckets;

 Otherwise, search time will be increased because many

overflow records will exist.

 Main disadvantages of static external hashing:

 Fixed number of buckets M is a problem if the number of

records in the file grows or shrinks.

 Ordered access on the hash key is quite inefficient

(requires sorting the records).

28

Dynamic And Extendible Hashed Files

 Dynamic and Extendible Hashing Techniques

 Hashing techniques are adapted to allow the dynamic

growth and shrinking of the number of file records.

 These techniques include the following: dynamic

hashing, extendible hashing, and linear hashing.

 Both dynamic and extendible hashing use the

binary representation of the hash value h(K) in

order to access a directory.

 In dynamic hashing the directory is a binary tree.

 In extendible hashing the directory is an array of size

2d where d is called the global depth.

29

Dynamic And Extendible Hashing (cont.)

 The directories can be stored on disk, and they
expand or shrink dynamically.
 Directory entries point to the disk blocks that contain

the stored records.

 An insertion in a disk block that is full causes the
block to split into two blocks and the records are
redistributed among the two blocks.
 The directory is updated appropriately.

 Dynamic and extendible hashing do not require
an overflow area.

 Linear hashing does require an overflow area
but does not use a directory.
 Blocks are split in linear order as the file expands.

Extendible

Hashing

30

Extendible Hashing – Example
Record K h(K) = K % 32 h(K)B

r1 2657 1 00001

r2 3760 16 10000

r3 4692 20 10100

r4 4871 7 00111

r5 5659 27 11011

r6 1821 29 11101

r7 1074 18 10010

r8 2123 11 01011

r9 1620 20 10100

r10 2428 28 11100

r11 3943 7 00111

r12 4750 14 01110

r13 6975 31 11111

r14 4981 21 10101

r15 9208 24 11000

r1 (00001)

r2 (10000)

d’ =0

d = 0

d’ = local depth
d = global depth

Each bucket has

maximum 2 records

Insert r3 (10100) =>
overflow=> splitting

Extendible Hashing – Example(cont.)

r1 (00001)

r2 (10000)

d’ =0

d = 0

Directory

0

1

d = 1

r1 (00001) d’ =1

r2 (10000)

r3 (10100)

d’ =1

Insert r4 (00111)

Insert r5 (11011) =>
overflow=> splitting

Extendible Hashing – Example(cont.)

0
1

d = 1

r1 (00001)

r4 (00111)

d’ =1

r2 (10000)

r3 (10100)

d’ =1

Extendible Hashing – Example(cont.)

00

01

10

11

d = 2

r1 (00001)

r4 (00111)

d’ =1

r2 (10000)

r3 (10100)

d’ =2

r5 (11011) d’ =2

Insert r6 (11101)

Extendible Hashing – Example(cont.)

Insert r7 (10010) =>
overflow=> splitting

00

01

10

11

d = 2

r1 (00001)

r4 (00111)

d’ =1

r2 (10000)

r3 (10100)

d’ =2

r5 (11011)

r6 (11101)

d’ =2

Extendible Hashing – Example(cont.)

Insert r8 (01011) =>
overflow=> splitting

010

011

100

101

000

001

110

111

d = 3

r1 (00001)

r4 (00111)

d’ =1

r3 (10100) d’ =3

r5 (11011)

r6 (11101)

d’ =2

r2 (10000)

r7 (10010)

d’ =3

Extendible Hashing – Example(cont.)

Insert r9 (10100)

010

011

100

101

000

001

110

111

d = 3

r8 (01011) d’ =2

r3 (10100) d’ =3

r5 (11011)

r6 (11101)

d’ =2

r2 (10000)

r7 (10010)

d’ =3

r1 (00001)

r4 (00111)

d’ =2

Extendible Hashing – Example(cont.)

010

011

100

101

000

001

110

111

d = 3

r8 (01011) d’ =2

r3 (10100)

r9 (10100)

d’ =3

r5 (11011)

r6 (11101)

d’ =2

r2 (10000)

r7 (10010)

d’ =3

r1 (00001)

r4 (00111)

d’ =2

Insert r10 (11100) =>
overflow=> splitting

Extendible Hashing – Example(cont.)

Insert r11 (00111) =>
overflow=> splitting

010

011

100

101

000

001

110

111

d = 3

r8 (01011) d’ =2

r3 (10100)

r9 (10100)

d’ =3

r5 (11011) d’ =3

r2 (10000)

r7 (10010)

d’ =3

r1 (00001)

r4 (00111)

d’ =2

r6 (11101)

r10 (11100)

d’ =3

Extendible Hashing – Example(cont.)

Insert r12 (01110)
010

011

100

101

000

001

110

111

d = 3

r8 (01011) d’ =2

r3 (10100)

r9 (10100)

d’ =3

r5 (11011) d’ =3

r2 (10000)

r7 (10010)

d’ =3

r1 (00001) d’ =3

r6 (11101)

r10 (11100)

d’ =3

r4 (00111)

r11 (00111)

d’ =3

Extendible Hashing – Example(cont.)

Insert r13 (11111) =>
overflow=> splitting

010

011

100

101

000

001

110

111

d = 3

r8 (01011)

r12 (01110)

d’ =2

r3 (10100)

r9 (10100)

d’ =3

r5 (11011) d’ =3

r2 (10000)

r7 (10010)

d’ =3

r1 (00001) d’ =3

r6 (11101)

r10 (11100)

d’ =3

r4 (00111)

r11 (00111)

d’ =3

Extendible Hashing – Example(cont.)

Insert r14 (10101) =>
overflow=> splitting

0010
0011

0000
0001

0110
0111

0100
0101

1010
1011

1000
1001

1110
1111

1100
1101

d = 4

r8 (01011)

r12 (01110)

d’ =2

r3 (10100)

r9 (10100)

d’ =3

r5 (11011) d’ =3

r2 (10000)

r7 (10010)

d’ =3

r1 (00001) d’ =3

r1 (11111) d’ =4

r4 (00111)

r11 (00111)

d’ =3

r6 (11101)

r10 (11100)

d’ =4

Extendible Hashing – Example(cont.)

Insert r15 (11000)

0010
0011

0000
0001

0110
0111

0100
0101

1010
1011

1000
1001

1110
1111

1100
1101

d = 4

r8 (01011)

r12 (01110)

d’ =2

r3 (10100)

r9 (10100)

d’ =4

r5 (11011) d’ =3

r2 (10000)

r7 (10010)

d’ =3

r1 (00001) d’ =3

r1 (11111) d’ =4

r4 (00111)

r11 (00111)

d’ =3

r6 (11101)

r10 (11100)

d’ =4

r14 (10101) d’ =4

Extendible Hashing – Example(cont.)

0010
0011

0000
0001

0110
0111

0100
0101

1010
1011

1000
1001

1110
1111

1100
1101

d = 4

r8 (01011)

r12 (01110)

d’ =2

r3 (10100)

r9 (10100)

d’ =4

r5 (11011)

r15 (11000)

d’ =3

r2 (10000)

r7 (10010)

d’ =3

r1 (00001) d’ =3

r1 (11111) d’ =4

r4 (00111)

r11 (00111)

d’ =3

r6 (11101)

r10 (11100)

d’ =4

r14 (10101) d’ =4

 M=4, h0(K) = K mod M, each bucket has 3

records.

 Initialization:

Linear Hashing – Example

0 1 2 3

4 : 8 : 5 : 9 : 13 6 : : 7 : 11 :

Split pointer

Insert 17
(17 mod 4 = 1)

Bucket 1: overflow

Split bucket 0

h1(K) = K mod 2*M

Linear Hashing – Example(cont.)

0 1 2 3 4

8 : : 5 : 9 : 13 6 : : 7 : 11 : 4 : :

Split pointer

17 : :

4: bucket (4 mod 2*4 =) 4

8: bucket (8 mod 2*4 =) 0

17: overflow records

Linear Hashing – Example(cont.)

0 1 2 3 4

8 : : 5 : 9 : 13 6 : : 7 : 11 : 4 : :

Split pointer

17 : :

insert 15
(15 mod 4 = 3)

Linear Hashing – Example(cont.)

0 1 2 3 4

8 : : 5 : 9 : 13 6 : : 7 : 11 : 15 4 : :

Split pointer

17 : :

insert 3
(3 mod 4 = 3)

Bucket 3: overflow

Split bucket 1.

=> Overflow records: Redistributed

Linear Hashing – Example(cont.)

0 1 2 3 4 5

8 : : 9 : 17 : 6 : : 7 : 11 : 15 4 : : 5 : 13 :

Split pointer

3 : :

5: bucket (5 mod 2*4 =) 5

9: bucket (9 mod 2*4 =) 1

13: bucket (13 mod 2*4 =) 5

17: bucket (17 mod 2*4 =) 1

Linear Hashing – Example(cont.)

0 1 2 3 4 5

8 : : 9 : 17 : 6 : : 7 : 11 : 15 4 : : 5 : 13 :

Split pointer

3 : :

Insert 23
(23 mod 4 = 3)

Bucket 3: overflow.

Split bucket 2.

Linear Hashing – Example(cont.)

0 1 2 3 4 5 6

8 : : 9 : 17 : : : 7 : 11 : 15 4 : : 5 : 13 : 6 : :

Split pointer

3 : 23 :

insert 31
(31 mod 4 = 3)

Bucket 3: overflow

Split bucket 3

=> Overflow records: Redistributed

Linear Hashing – Example(cont.)

0 1 2 3 4 5 6 7

8 : : 9 : 17 : : : 11 : 15 : 3 4 : : 5 : 13 : 6 : : 7 : 23 : 31

Split pointer

7: bucket (7 mod 2*4 =) 7

11: bucket (11 mod 2*4 =) 3

15: bucket (15 mod 2*4 =) 3

3: bucket (3 mod 2*4 =) 3

23: bucket (23 mod 2*4 =) 7

31: bucket (31 mod 2*4 =) = 7

h1(K) = K mod 8

53

Parallelizing Disk Access using RAID

Technology.

 Secondary storage technology must take steps to

keep up in performance and reliability with

processor technology.

 A major advance in secondary storage technology is

represented by the development of RAID, which

originally stood for Redundant Arrays of

Inexpensive Disks.

 The main goal of RAID is to even out the widely

different rates of performance improvement of disks

against those in memory and microprocessors.

54

RAID Technology (cont.)

 A natural solution is a large array of small independent
disks acting as a single higher-performance logical disk.
A concept called data striping is used, which utilizes
parallelism to improve disk performance.

 Data striping distributes data transparently over multiple
disks to make them appear as a single large, fast disk.

55

RAID Technology (cont.)

 Different raid organizations were defined based on
different combinations of the two factors of granularity of
data interleaving (striping) and pattern used to compute
redundant information.
 Raid level 0 has no redundant data and hence has the best write

performance.

 Raid level 1 uses mirrored disks.

 Raid level 2 uses memory-style redundancy by using Hamming
codes, which contain parity bits for distinct overlapping subsets of
components. Level 2 includes both error detection and correction.

56

RAID Technology (cont.)
 Raid level 3 uses a single parity disk relying on the disk controller to

figure out which disk has failed.

 Raid levels 4 and 5 use block-level data striping, with level 5 distributing
data and parity information across all disks.

57

RAID Technology (cont.)
 Raid level 6 applies the so-called P + Q redundancy scheme using

Reed-Soloman codes to protect against up to two disk failures by using
just two redundant disks.

58

Use of RAID Technology (cont.)
 Different raid organizations are being used under

different situations:
 Raid level 1 (mirrored disks) is the easiest for rebuild of a disk

from other disks

 It is used for critical applications like logs.

 Raid level 2 uses memory-style redundancy by using Hamming
codes, which contain parity bits for distinct overlapping subsets
of components. Level 2 includes both error detection and
correction.

 Raid level 3 (single parity disks relying on the disk controller to
figure out which disk has failed) and level 5 (block-level data
striping) are preferred for large volume storage, with level 3
giving higher transfer rates.

 Most popular uses of the RAID technology currently are: Level 0
(with striping), Level 1 (with mirroring) and Level 5 with an extra
drive for parity.

 Design decisions for RAID include – level of RAID, number of
disks, choice of parity schemes, and grouping of disks for block-
level striping.

59

Storage Area Networks

 The demand for higher storage has risen considerably
in recent times.

 Organizations have a need to move from a static fixed
data center oriented operation to a more flexible and
dynamic infrastructure for information processing.

 Thus they are moving to a concept of Storage Area
Networks (SANs).

 In a SAN, online storage peripherals are configured as
nodes on a high-speed network and can be attached and
detached from servers in a very flexible manner.

 This allows storage systems to be placed at longer
distances from the servers and provide different
performance and connectivity options.

60

Storage Area Networks (cont.)

 Advantages of SANs are:

 Flexible many-to-many connectivity among servers and

storage devices using fiber channel hubs and switches.

 Up to 10km separation between a server and a storage

system using appropriate fiber optic cables.

 Better isolation capabilities allowing nondisruptive addition

of new peripherals and servers.

 SANs face the problem of:

 combining storage options from multiple vendors

 dealing with evolving standards of storage management

software and hardware.

Review questions
1) What is the difference between a file organization and an

access method?

2) What is the difference between static and dynamic files?

3) What are the typical record-at-a-time operations for accessing

a file? Which of these depend on the current record of a file?

4) Discuss the advantages and disadvantages of (a) unordered

file, (b) ordered file, and (c) static hash file with buckets and

chaining. Which operations can be performed efficiently on

each of these organizations, and which operations are

expensive?

5) Discuss the techniques for allowing a hash file to expand and

shrink dynamically. What are the advantages and

disadvantages of each?

61

